February 9-10, 2019
Kent State University

KSU/AMLCI - CMU/CNA
Applied Mathematics Symposium on
Advanced Materials

KSU/AMLCI – CMU/CNA
Advanced Materials and Liquid Crystal Institute
Carnegie Mellon University
Mellon College of Science
CNA | Center for Nonlinear Analysis

Visit events.mcs.cmu.edu/advanced-materials-symposium-2019
for more information

Speakers
Kaushik Dayal, Carnegie Mellon University, USA
Weinan E, Princeton University, USA; Peking University, China
Irene Fonseca, Carnegie Mellon University, USA
Eugene Gartland, Kent State University, USA
Dmitry Golovaty, University of Akron, USA
Richard James, University of Minnesota, USA
David Kinderlehrer, Carnegie Mellon University, USA
Robert Kohn, New York University, USA
Peter Palffy-Muhoray, Kent State University, USA
Michael Shelley, New York University, USA
Epifanio Virga, University of Pavia, Italy
Xiaoyu Zheng, Kent State University, USA

Organizers
Peter Palffy-Muhoray, AMLCI – Kent State University
Xiaoyu Zheng, AMLCI – Kent State University
Irene Fonseca, CNA – Carnegie Mellon University
Dejan Slepcev, CNA – Carnegie Mellon University

THE DEADLINE FOR REGISTRATION IS JANUARY 11, 2019

Dislocation motion by kink-pair mechanism in BCC Tantalum using a regularized dislocation dynamics model (photo courtesy of Jade Xiaoyao Peng (CMU), Nitin Mathew (LANL), Irene Beyerlein (UCSB), Kaushik Dayal (CMU), Abigail Hunter (LANL))

Wrinkling of a thin circular sheet bonded to a spherical substrate (photo courtesy of P. Bella and R.V. Kohn)

Comparison of the energies predicted by density functional theory (DFT) and Deep Potential, a deep learning based potential energy model, for different kind of systems (photo courtesy of E. Weinan)

Lily-like twist distribution on the cross-section of toroidal nematic droplets (photo courtesy of Epifanio Virga)

Wrinkling of a thin circular sheet bonded to a spherical substrate (photo courtesy of P. Bella and R.V. Kohn)

Comparison of the energies predicted by density functional theory (DFT) and Deep Potential, a deep learning based potential energy model, for different kind of systems (photo courtesy of E. Weinan)

Lily-like twist distribution on the cross-section of toroidal nematic droplets (photo courtesy of Epifanio Virga)